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Abstract 
Alkali-Aggregate Reaction (AAR) is a concrete pathology that is mostly acknowledged by its 

map cracking pattern look at macro-level. At micro-level, it is also well established that the formation 
of AAR gels can be responsible for the shaping of cracks within aggregates and pores. This paper 
presents an automatic crack detection in cementitious systems affected by mechanisms of cracking. 
The assessment was made via Scanning Electron Microscopy by using Back-scattered Electron 
Imaging (BEI) mode (Quanta 450 FEI). On this image mode, the grey level can be associated to 
particular features of hydration as well as pores and cracks in cementitious systems. The hydrated 
cement samples were sliced, ground and polished down to a quarter of microns prior to vacuum gold-
sputtering process. The original grayscale scanned image of each BEI was analyzed by using 
morphological image processing techniques and threshold operations. A multilevel thresholding 
operation was performed by using the Quantum Particle Swarm Optimization (QPSO) approach to Otsu’s 
criteria. The preliminary results point out to good performance and show a rough calculation for the 
area fraction phases, as well as the automatic crack measurements of the resulting binary image by 
graph algorithms. 
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1  INTRODUCTION 

Alkali Aggregate Reaction (AAR) is a concrete pathology that occurs between some aggregate 
types and the alkalis in the pore solution of concrete, forming a gel that can be responsible for the 
shaping of cracks within aggregates and pores, reducing the durability and mechanical properties of 
concrete. The microstructural analysis for quantifying the cracks and investigate its relationship with 
other aspects of concrete (e.g. aggregate distribution and hydrated cement content), can be important 
for the conception of criteria for diagnosis and assessment of the degree of reaction. 

The analysis of polished concrete samples by Backscattered Electron Image (BEI) has shown a 
great potential [1]. Image analysis procedures for characterization of concrete phases has been 
proposed for quantifying anhydrous and hydrated cement content [2,3,4], porosity [5,6,7] and 
aggregate [8]. In the literature the use of multilevel thresholding for BEI segmentation has been little 
explored, usually applying simple thresholding techniques separately.  

The use of swarm intelligence optimization algorithms for image segmentation tasks have been 
extensively studied [9]. Some works [10,11,12] proposed to optimize the multilevel Otsu’s method of 
the maximum between-classes variance. These techniques can be an alternative to the exhaustive 
searching methods that are infeasible in some applications due to the computational cost involved.  

As a later step to the segmentation phase, the crack modeling in graph structures has been 
recently explored  [13,14], enabling the proposition of methods for features extraction with great 
capacity to deal with connectivity.  

In this paper, the Quantum Particle Swarm Optimization (QPSO) is applied to BEI segmentation 
of cement paste specimens as preliminary step to the crack detection, besides allowing the area 
fraction calculation of phases. We apply morphological operations as a preprocessing step to adjust 
the crack binary image. We also propose the use of graph algorithms for pore filtering and automatic 
extraction of the length and width of the cracks. In section 2, the materials and methods are described. 
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 The automated process of image analysis is explained in section 3. Preliminary results are shown in 
section 4 followed by the final remarks. 
 
2  MATERIALS AND METHODS 
2.1  Materials and mix designs 

Samples were cast using early strength development Portland cement and two water to binder 
ratio (0.33 and 0.44 by mass) as presented in Table 1. Two sets of cement pastes were mixed with and 
without an ultrafine ground redbrick waste pozzolan (15,000 cm2/g Blaine) replacing cement (20% by 
mass). Fractured samples were lapped and polished down to 1/4 micron prior to testing. The samples 
were analyzed by Scanning Electron Microscopy (Backscattered Electron Imaging Mode). Test ages 
were 1, 3 and 7 days.  

 
TABLE 1: Composition of mixtures used in the microstructural analysis. 

Mixture Water/binder ratio (w/b) Cement Pozzolan 

M33 0.33 1 0 

M44 0.44 1 0 

M33PZ 0.33 0.8 0.2 

M44PZ 0.44 0.8 0.2 

 
 
2.2  Methods for assessment and analysis 
 The hydrated cement samples were sliced, ground and polished down to a quarter of microns 
prior to vacuum gold-sputtering process. The assessment by microstructural characterization was 
made via Scanning Electron Microscopy by using Backscattered Electron Image (BEI) mode (Quanta 
450 FEI). The SEM was used with an acceleration voltage of 20 kV and magnification of 500x. All 
image analysis procedures will be described in detail in the next section. 
 
3  ANALYSIS IMAGE PROCEDURES 
 The histogram of a specimen, as shown in Figure 1, has peaks that indicates some phases with 
the exception of pores. Finding suitable thresholds can provide a good segmentation and it depends 
of the chosen method. The Otsu’s method qualifies a thresholding by maximum inter-class variance, 
as detailed in Appendix I. The flow diagram in Figure 2 shows the steps associated to the process that 
was implemented and executed in MATLAB R2012a platform using the image processing toolbox. 
The first step consists on the QPSO multilevel thresholding (see section 3.1). Next, morphological 
operations are applied to crack binary image for adjustment and recovery of cracks. Finally, the cracks 
are modeled with a graph to filter the pores and extracting the attributes of interest.  
 

 
FIGURE 1: a) BEI of the specimen M33PZ observed with one day of age. b) Histogram with peaks 

associated to phases. 
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FIGURE 2: Flow chart of the crack detection process. 

3.1  Quantum Particle Swarm Optimization applied to BEI segmentation 
 Particle Swarm Optimization (PSO) is a stochastic optimization method proposed by Kennedy 
and Eberhart [15] that solves a problem by iteratively move a set of particles, called swarm, around in 
the multidimensional space according to equations over the particle's position and velocity. The 
algorithm was motivated by social behavior of organisms such as birds while searching for food. For 
each new particle position, a different problem solution is generated. This solution is evaluated by an 
objective function or fitness, which must be optimized (minimized or maximized) and provides a 
quantitative value of the particle in question. The particles determines their positions and velocities 
through the search space according to the best fitness throughout its history or personal best (pbest) 
and global best position (gbest) obtained by swarm, as shown in equation (1) and (2). V୧,୨

୲ାଵ represents 
the velocity vector for i-th particle in the dimension j in the iteration t+1; w is an inertial weight, 
cଵ	and cଶ are acceleration constants and rଵ୨, rଶ୨ ∈ ሾ0,1ሿ are random values uniformly distributed. 
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୲ାଵ ൌ w ൈ V୧,୨
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The PSO algorithm pseudocode has the following steps: 
Step 1: Initialize swarm of particles with random positions, calculate fitness of each particle (initial 
pbest) and find the initial gbest; 
Step 2: Calculate velocity vectors and positions using equations (3) and (4); 
Step 3: Update, when improvement occurs, pbest and gbest; 
Step 4: If the termination criteria is found, return to gbest solution. Otherwise, go to Step 2. 
 
 In many applications, quantum-behaved PSO (QPSO) algorithms can be more efficient than 
conventional PSO. The quantum system is not a simple linear system, but a complex nonlinear 
system, and follows the superposition principle of states [12]. In QPSO, replacing the equations (1) 
and (2) by equations (3), (4) and (5) to control the movements of the particles by sampling the wave 
function in a quantum system. 
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where mbest (3) is the mean position of the personal bests in the swarm with M particles and d 
dimensions.	A୧ (6) is the local attractor of the i-th particle, which combines information from personal 
best and global best, weighted by ߮ ∈ [0,1], random value uniformly distributed. x୧ሺt  1ሻ is the new 
particle position , where is fixed the creativity coefficient and u ∈	[0,1] random value uniformly 
distributed. Several particles can be generated and cooperative approaches can be used to find the best 
move, as explored in [12,17]. 

For BEI segmentation, each particle in QPSO retains a set of k thresholds (particles moves 
in k-dimensional space) and the fitness value is the multilevel Otsu’s method. A simple modification 
in the objective function may be carried out by weighing the class variance terms with λ ൌ
ሼλଵ, λଶ, … , λ୩ሽ, as shown in equation (6). This adaptation can generates interesting results and 
provides a parametrization for different application contexts.  
 

fሺtሻ ൌ λଵ ൈ wଵ ൈ ሺμଵ െ μሻ  λଶ ൈ wଶ ൈ ሺμଶ െ μሻ ⋯λ୩ ൈ w୩ ൈ ሺμ୩ െ μሻ           (6) 
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3.2  Morphological operations 
 On the morphological operators, the effect is determined by a structuring element that consists 
of a rectangular grid with small dimensions and specified pattern.  The structuring element probes the 
binary image by positioning its origin, often the matrix center, with each pixel and verifies if it hits, 
fills or fills other active pixels (equals to one), depending on the operator’s choice. These operations 
are useful to correct binary images. In the case studied, for solving some discontinuities in cracks, a 
closing operation (dilation followed by erosion operation) was performed with 4x4 square and 3x3 
diamond structuring element. 
 
3.3  Crack measurements by graph algorithms 

A graph is a mathematical modeling tool that consists of nodes and edges representing entities 
and relationships, respectively. We can model a crack as a graph G from its binary image (Figure 3 (a)), 
This is made by creating a node for each pixel that maps the crack and edges linking orthogonal and 
diagonal nodes, as shown in Figure 3 (b). Using a depth-first search algorithm [18], we can easily 
separate the cracks by exploring the connectivity and eliminate the low cardinality components (see 
Figure 3 (b)). In Figure 3 (c) we can observe a reduction graph generated by Kruskal's algorithm [19], 
which reduces the computational costs of subsequent procedures. Then pruning operation is 
performed to obtain the graph skeleton over which is calculated the diameter of each connected 
component of the graph, which refers to the length of the underlying cracks. 

 

 
FIGURE 3: a) Synthetic binary image. b) Underlying graph G. c) ܩ	filtered and processed by Kruskal's 

algorithm. d) Skeleton graph obtained by pruning operation. 

A pore filter can be designed to eliminate connected components by high cardinality-diameter 
ratio, which removes rounded shape objects if the inequality (7) is satisfied. Good results were 
obtained for  ݐ ൌ 0.25. 
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The figure 4 shows the full process for crack detection, starting with the original BEI in Figure 

4(a). Next, in Figure 4 (b) we have a binary crack image that is processed by dilation and erosion 
morphological operations (see Figure 4(c) and 4(d)). Finally, the resulting image is filtered by graph 
algorithms that eliminates small connected components (see Figure 4(e)) and pores (see Figure 4(f)). 
 

a) b)

d)c)



 
FIGURE 4: Crack detection process. a) Original BEI. b) Crack binary image. c) Result of the dilatation 

operation. d)  Result of the erosion operation e) Graph filtering for small components. f) Graph pore filtering. 

4  PRELIMINARY RESULTS 
As already discussed, weighing the terms of the Otsu’s function can improve the segmentation 

results, as shown in Figure 5. In Figure 5(a) and 5(b) we have the result for two thresholds with 
original and weighted (by ߣଵ= 0.93) criteria, respectively. There is a clear difference between the 
segmentations, since the cracks and pores were better separated from the intermediate phase. In 
Figure 5(c) and 5(d), for three thresholds and ߣଵ= 0.95, ߣଶ= 0.96, the Si grains were segmented 
successfully, as well as pores and cracks.  

 

 
FIGURE 5: Effect of the modification proposed in Otsu’s method. a)-c) Results for the original method. b)-d) 

Results for the weighted method. e)-f) Comparison of the thresholds in histogram. 

a) b) c)

f)e)d)

5500
5000
4500
3500
3000
2500
2000
1500
1000
  500
      0

0               50              100               150             200               255

original criteria
weighted criteria

e)
5500
5000
4500
3500
3000
2500
2000
1500
1000
  500
      0

0               50              100               150             200               255

original criteria
weighted criteria

f)



More results for crack detection are shown in Figure 6 for specimens M33 and M33PZ 
observed in one and seven days, respectively. In Figure 6(a) and 6(d) we have the original BEI with its 
segmentation in Figure 6(b) and 6(e). In Figure 6(c) and 6(f) the cracks detected are presented.  
 

 
FIGURE 6: a)-d) BEI for M33 and M33PZ samples with one and seven days, respectively. b)-d) 
Segmentation results for two thresholds. c)-f) Final result of crack detection for both specimens. 

In Table 2, some crack measurements such as the number of cracks, maximum length and 
width, are reported for the three BEI illustrated in this paper. The length was calculated by graph 
diameter algorithm. The widths were obtained by a simple procedure based on region growing 
methods that seeks the maximum neighborhood quadratic matrix in the crack for each internal pixel. 
In Table 3 the area fraction of the phases are reported for twelve specimens segmented by QPSO with 
two thresholds. 
 

TABLE 2: Crack measurements obtained by graph algorithms.  

Specimen Age (days) #Cracks Maximum length (px) Maximum width (px) 

M33 1 2 200 7 

M33PZ 1 35 421 7 

M33PZ 7 17 142 5 

. 

TABLE 3: Area fraction of the phases calculated by segmentation results. 

Specimen Age (days) Pores  (%) Crack (%) Si grains + hydrated products (%) Clinker (%) 

M33 1 0.51 0.61 76.78 22.09 

M33 3 3.54 0.27 70.83 25.36 

M33 7 0.47 0.00 82.11 17.42 

M44 1 0.20 0.90 83.03 15.87 

M44 3 2.23 0.00 85.41 12.35 

M44 7 0.84 0.22 84.30 14.63 

M33PZ 1 1.03 1.65 80.72 16.59 

M33PZ 3 0.39 0.24 85.15 14.18 



Specimen Age (days) Pores  (%) Crack (%) Si grains + hydrated products (%) Clinker (%) 

M33PZ 7 2.15 1.02 85.56 11.26 

M44PZ 1 0.77 0.22 81.63 17.38 

M44PZ 3 2.97 0.53 73.91 22.59 

M44PZ 7 1.46 0.98 88.77 8.80 

 
 

5  FINAL REMARKS 
In this paper we proposed to quantify the phases of the cement paste by multilevel 

thresholding with the Quantum Particle Swarm Optimization (QPSO) algorithm that optimizes Otsu’s 
criteria. We have also proposed modeling the resulting binary image as a graph to extract features of 
interest. The procedures can easily adapt to new specimen settings with necessary adjustments to the 
existing parameters. As future work, new features related to crack branching can be extracted for map 
cracking and machine learning models (e.g. Artificial Neural Networks) can be explored for damage 
prognosis. 
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Appendix I 
 

For the set of segments S ൌ ሼSଵ,Sଶ, … , S୩ሽ and the set of thresholds T ൌ ሼtଵ, tଶ, … , t୩ሽ we 
have Sଵ ൌ ሾ0,… , tଵ െ 1ሿ, Sଶ ൌ ሾtଵ, … , tଶ െ 1ሿ, … , Sଵ ൌ ሾt୩, … , L െ 1ሿ for an image with 0 up to L-1 
gray level. The probability for each segment is given by wଵ ൌ ∑ p୧

୲భିଵ
୧ୀ , wଶ ൌ ∑ p୧

୲మିଵ
୧ୀ୲భ

, … ,w୩ ൌ

∑ p୧
ିଵ
୧ୀ୲ౡ , where p୧ ൌ

୦ሺ୧ሻ


 for h(i) as level frequency of i in histogram with N pixels. The mean for each 

segment is μଵ ൌ 	∑
୧ൈ୦ሺ୧ሻ

୵భൈ
,୲భିଵ

୧ୀ 	μଶ ൌ 	∑
୧ൈ୦ሺ୧ሻ

୵మൈ
,୲మିଵ

୧ୀ୲భ
… , μ୩ ൌ 	∑

୧ൈ୦ሺ୧ሻ

୵ౡൈ
ିଵ
୧ୀ୲ౡ 		and the total mean is equals 

to μ ൌ wଵ ൈ μଵ		wଶ ൈ μଶ…w୩ ൈ μ୩	. The Otsu’s multilevel criteria seeks the thresholds that 
 maximizes the inter-class variance for optimizing the function (12) as shown in equation (13)  
 
 fሺTሻ ൌ wଵ ൈ ሺμଵ െ 	μሻ  wଶ ൈ ሺμଶ െ 	μሻ  ⋯w୩ ൈ ሺμ୩ െ 	μሻ              (12) 

ሺtଵ∗ , tଶ
∗ , … , t୩

∗ ሻ ൌ arg max
ஸ୲భஸ୲మஸ⋯ஸ୲ౡ≪ଵ

fሺTሻ                (13) 

 


