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Abstract 
 Degree of  deterioration by alkali-silica reaction (ASR) varies between structures or between members 
or locations of  a structure, depending on environmental or confinement conditions. Mechanical performance 
of  concrete structures depends on the mechanical properties of  concrete and reinforcing bars as well as 
those of  the bond between them. In order to ensure safety of  a structure damaged by ASR which affects 
mechanical properties of  concrete, the degree of  deterioration should be accurately determined for proper 
quantitative evaluation of  the mechanical performance of  the structure. This study consisted of long-term 
exposure and measurement followed by a loading test using unprecedentedly large-size prestressed concrete 
(PC) beam specimens simulating real PC structures affected by ASR. Control specimens were also prepared 
for comparison and subjected to the loading test. This paper reports results of the study and the visual 
observation of the cut sections of the specimens after the loading test. 
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1  LONG-TERM MEASUREMENT USING SPECIMENS UNDER ASR EXPOSURE 
1.1 Outline of  the specimens 
 Long-term measurement under exposure to alkali-silica reaction (ASR) was conducted by Japan 
Prestressed Concrete Contractors Association, using large- and medium-size concrete beam specimens 
containing alkali-silica reactive or non-reactive aggregate (four specimens in total). 
 The large specimens had a cross-sectional area equivalent to or larger than that of  a post-tensioned 
prestressed concrete (PC) simple T-girder bridge, and the medium specimens had a cross-sectional area 
equivalent to or larger than that of  a pre-tensioned PC simple T-girder bridge. Prestress was applied by using 
the post-tensioning system to create stress states where axial compressive stress (P/A) was similar to those in 
real structures. Longitudinal profile of  prestressing bars has a significant influence on the eccentric moment 
due to the prestress as well as the vertical component of  force due to the bending-up of  the bars. Since the 
purpose of  this study was to identify the basic behaviors of  ASR-affected structures, the prestressing bars 
were laid straight at the center of  the cross section to eliminate eccentric moment and vertical component of  
force and simplify the effects on ASR deterioration or load carrying behavior. 
 The control and ASR specimens were manufactured to the same dimensions and same structure in 
February 2005 [1], and subjected to about 7.5 years of  external exposure to allow for ASR deterioration until 
August 2012 when the bending fracture test was conducted. Figure 1 shows the dimensions of  the specimens 
and the layout of  the reinforcing and prestressing bars. 
 
1.2 Crack measurement results 
 Figure 2 shows changes in crack density of  the ASR specimens during 7.5 years after the manufacture. 
Crack density increased with age, showing a progress of  ASR deterioration. Figure 3 shows crack density with 
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respect to the crack width. The ratios of  wider cracks to the total increased with age. The measurements were 
conducted basically during spring or autumn seasons, except for the last measurement which was conducted 
in July (summer) immediately before the loading test. This explains the significant increases found in the last 
measurement, and the general trend can be considered to be toward a convergence. 
 The crack density used in this study is the product of  crack length and crack width per unit area 
(Method B), not the commonly-used total crack length per unit area (Method A). The purpose of  using 
Method B was to take into account the fact that the increase in crack width was more significant than that in 
crack length after an age of  about 500 days [1]. Accordingly, crack density before the fracture test was 5 
mmm/m2, with obvious increases in both the number and width of  the cracks. Figure 4 shows a sketch 
drawing of  cracks observed in the large specimen before the loading test. 
 
1.3 Concrete internal strain measurement results 
 Concrete internal strain was measured by using the concrete strain gauge (KM-100BT; gauge length: 
100 mm) and reinforcing steel strain gauge installed in the central part of  the specimens. Figures 5 and 6 
show the internal strain measurement results of  the medium and large specimens, respectively. Increase in 
strain was faster in the large specimen than in the medium specimen, which was likely attributable to the 
effect of  the size difference between the specimens (volume effect). Internal strain in the large specimen was 
found to be 650010-6 in the transverse direction or 350010-6 in the vertical direction at the final 
measurement. 
 
1.4 Ultrasonic propagation velocity measurement results 
 Figure 7 shows changes in ultrasonic propagation velocity in each specimen. The measurement was 
taken for two cases with incident waves applied from two sides of  the specimen or from the top and bottom 
of  the specimen. Ultrasonic propagation velocity decreased to about 3300 m/s by the last measurement in 
the ASR specimens of  both sizes. All specimens showed a similar tendency at 2500 days where the values 
slightly increased. This was first considered to be due to gels or other byproducts filling the cracks. However, 
the values were found to be low again at the measurement immediately before the loading test. Consequently, 
it was concluded that the cracks were opened wider during the last measurement due to the high temperatures. 
 
1.5 Relationships between ultrasonic propagation velocity and measurement factors 
 It is known that there is a high correlation between ASR deterioration and decrease in ultrasonic 
propagation velocity. This section studies the relationship between the non-destructively obtained ultrasonic 
propagation velocity and two measurement factors of  ASR deterioration: crack density and internal strain. 
 
Relationship between ultrasonic propagation velocity and crack density 
 Figure 8 shows the relationship between ultrasonic propagation velocity and crack density in the large 
ASR specimen. Propagation velocity decreased to around 3800 m/s when crack density increased to 1 
mmm/m2 in both the side-to-side and vertical incidence cases. 
 Figure 9 shows the relationship between ultrasonic propagation velocity and crack density in the 
medium ASR specimen. Difference was found in the shape of  the curves between crack widths w  0.05 mm 
and w  0.20 mm. For w  0.05 mm, crack density was about 2.5 mmm/m2 when propagation velocity 
decreased to about 3800 m/s which was reached at a crack density of  1 mmm/m2 in the large specimen. 
Although some measurement errors might be present, these results demonstrate the effect of  the specimen 
sizes, showing more rapid decreases in propagation velocity at lower crack densities in the large specimen. 
 
Relationship between ultrasonic propagation velocity and internal strain 
 Figure 10 shows the relationship between ultrasonic propagation velocity and internal strain in the 
large ASR specimen. Although there were minor differences between the side-to-side and vertical incidence 
cases, propagation velocity decreased to around 3600 m/s when concrete internal strain increased to around 
200010-6. Internal strain increased with the progress of  ASR deterioration, while propagation velocity 
showed a convergence at around 3500 m/s. However, the measurement immediately before the loading test 
showed a decrease in propagation velocity and an increase in strain. This behavior which was similar to that 
found in crack density was considered to be due to the high temperatures during the last measurement. 
 Figure 11 shows the relationship between ultrasonic propagation velocity and internal strain in the 
medium ASR specimens. With some differences found between the side-to-side and vertical incidence cases, 
propagation velocity decreased to around 3400 m/s when concrete internal strain increased to around 
200010-6. Despite the general tendencies of  increase in internal strain with the progress of  ASR 
deterioration and convergence in propagation velocity at around 3500 m/s, the decrease in propagation 



velocity and increase in strain were found at the measurement immediately before the loading test, suggesting 
the effect of  the high temperatures. 
 
2 LOADING TEST 
2.1 Fracture test for flexural capacity calculation 
 A loading test was carried out at 22 months when ASR deterioration became significant, under the 
conditions equivalent to the flexural cracking load assuming the service state. A bending fracture test was 
carried out at 90 months to compare the flexural capacity between the ASR and control specimens (Figure 
12). The following sections describe the bending fracture test at 90 months. 
 The authors monitored the effects of the existing ASR cracks in the specimens on the flexural failure 
behavior during the fracture test. The specimens were cut using a wire saw after the test, and internal 
deterioration and crack development were examined. Test pieces (200 mm in length, 100 mm in diameter) 
were taken from the cut specimens using a core boring machine, and mechanical properties of the specimens 
were examined. 
 The mechanical properties of the core samples are reported in the other paper from the same study [4]. 
 
2.2 Results of the fracture test for flexural capacity calculation 
 Table 1 shows a comparison of flexural failure load of the ASR and control specimens. The 
mechanical property values used in the calculation of the capacity (fracture resistance moment based on the 
Design specifications for highway bridges and commentary by Japan Road Association [3]) were the actual 
measured values of the test pieces. Decrease in capacity was expected in the ASR specimens which had 
numerous wide cracks and a crack density of 5 mmm/m2 by Method B. However, no significant difference 
was found in the measured flexural capacity between the ASR and control specimens. The measured values 
were mostly consistent with the calculated values not only in the control specimens but also in the ASR 
specimens, with the measurement/calculation ratio being 1.04. The use of actual mechanical property values 
of the test pieces provided accurate calculation of flexural capacity of the ASR-affected structures. All 
specimens failed in flexural compression mode. 
 Figure 13 shows the load-displacement curves for the large specimens with a schematic of the loading 
steps of the test, and Figure 14 shows sketch drawings from the flexural crack observation. According to the 
visual observation, flexural cracks occurred at a lower load level in the ASR specimen as compared to the 
control specimen. The control specimen had an obvious point of decrease in stiffness at the initiation of 
flexural cracks. In contrast, the ASR specimen which already had numerous cracks before the loading test 
showed a constant decrease in stiffness, without an obvious point of decrease. The control/ASR ratio in 
vertical displacement at the midspan under the flexural cracking load or below was 0.68 due to the decrease in 
bending stiffness. 
 The flexural crack observation revealed that the cracks in the ASR specimens were small in both 
spacing and width, and were distributed in a wide range in the longitudinal direction. 
 
2.3 Visual observation of internal cracks in the cut section 
 Figure 15 shows a cut section (at the 1/4 span point from the support) of the large ASR specimen 
after the fracture test. Although many ASR cracks occurred in the surface regions of the specimen, most of 
them were found outside the stirrup, with almost no further development into the inside. 
 
3 DISCUSSION 
 Figure 16 shows load-displacement curves under the maximum load. Changes in gradient were less 
significant in the ASR specimens than in the control specimens. This was considered to be due to the higher 
dispersion of  flexural cracks in the ASR specimens (Figure 14) which should have resulted in a relatively 
slower decrease in stiffness. 
 Figure 17 shows changes in neutral axis which was determined from the strain distribution in the 
prestressing bars at each loading step. Neutral axes of  the large ASR specimen were at lower positions than 
those of  the control specimen at all loading steps. There were two likely reasons for this. One was that, while 
flexural cracks occurring in the control specimen were small in number and developed quickly upward with 
the increase in the load, flexural cracks in the ASR specimen were induced by the existing vertical cracks 
occurring in the cover concrete at the bottom fiber, which resulted in a higher crack dispersion and smaller 
widths of  individual cracks. The other was that the development of  flexural cracks was slow as being partly 
discontinued by the presence of  horizontal cracks in the cover concrete (Figure 18). 
 Although numerous cracks occurred in the ASR specimens in this study, there was no rupture of  
stirrups or other reinforcing bars. Consequently, it could be concluded that confinement remained effective 
inside the stirrups to suppress inward development of  the cracks. 
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TABLE 1: Comparison of  flexural failure load.

 
Large specimens Medium specimens 

Remarks 
Control ASR Control ASR 

At 
initiation 
of  cracks 

Calculated Flexural moment Mc (kNm) 2942 2782 237 245  
Load Pc (kN) 1883 1781 345 356  

Measured Load Pc' (kN) 1700 1300 380 380  
Ratio Pc'/Pc 0.90 0.73 1.10 1.07  

At initial 
yielding 

Calculated 
Flexural moment My0 (kNm) 5909 5778 472 501  
Load Py0 (kN) 3782 3698 687 729  
Neutral axis X (m) 0.389 0.490 0.161 0.197 Reference values

At 
flexural 
failure 

Calculated 
Flexural moment Mu (kNm) 7954 7321 660 631  
Load Pu (kN) 5090 4686 960 918  
Neutral axis X (m) 0.244 0.334 0.108 0.135 Reference values

Measured Flexural failure load Pu' (kN) 4908 4885 955 1020  
Ratio Pu'/Pu 0.96 1.04 0.99 1.11  

Mode of  failure 
Flexural 

compression 
mode 

Flexural 
compression 

mode 

Flexural 
compression 

mode 

Flexural 
compression 

mode 
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FIGURE 1: Outline of  the specimens 



 

 
Crack density (m/m2) by Method A   Crack density (mmm/m2) by Method B 

FIGURE 2: Changes in crack density 
 
 

 
FIGURE 3: Crack density with respect to the crack width 

 
 

 
 

FIGURE 4: Sketch drawing of  cracks observed in the large ASR specimen before the loading test 
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FIGURE 5: Changes in concrete internal strain in the large ASR specimen 

 
 

 
FIGURE 6: Changes in concrete internal strain in the medium ASR specimen 
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FIGURE 7: Changes in ultrasonic propagation velocity 

 
 

 
FIGURE 8: Ultrasonic propagation velocity vs. crack density in the large ASR specimen 

 
 

 
FIGURE 9: Ultrasonic propagation velocity vs. crack density in the medium ASR specimen 
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FIGURE 10: Ultrasonic propagation velocity vs. concrete internal strain in the large ASR specimen 

 

 
FIGURE 11: Ultrasonic propagation velocity vs. concrete internal strain in the medium ASR specimen 

 
 

 
 FIGURE 12: View of  the loading test   FIGURE 15: Crack distribution in a cut section 
          (Large ASR specimen) 

 
 

 
FIGURE 13: Load-displacement curves for the large specimens and a schematic of the loading steps 
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FIGURE 14: Flexural cracks 
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FIGURE 16: Load-displacement curves at the last loading step 

 
 

 
 

FIGURE 17: Changes in neutral axis in the large specimens 
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FIGURE 18: Flexural cracks in an ASR-affected beam under load 
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