# PETROGRAPHY OF THE KINGSTON EXPERIMENTAL SIDEWALK AT AGE 22 YEARS – ASR AS THE CAUSE OF DELETERIOUSLY EXPANSIVE, SO-CALLED ALKALI-CARBONATE REACTION

Tetsuya Katayama<sup>1\*</sup>, Patrick E Grattan-Bellew<sup>2</sup>

<sup>1</sup>Kawasaki Geological Engineering Co. Ltd., Tokyo, Japan

<sup>2</sup>Materials & Petrographic Research G-B Inc.

### Abstract

Detailed SEM-EDS analysis of the Kingston sidewalk concretes in Canada revealed that ASR is responsible for expansion of so-called ACR, producing ASR gel that fits general trends of typical ASR gel on the [Ca/Si]-[Ca]/[Na+K] diagram. Dedolomitization gave no evidence of expansion but caused carbonation of ASR gel leaving a fragile texture, masking petrographic evidence of ASR in optical microscopy. The same applies to a concrete failure in Kentucky, USA, where high-Ca fly ash and low-alkali Portland cement could not suppress ASR of chert and dolomitic limestone aggregates. High-alumina cement was found to produce expansion by ASR and dedolomitization.

Keywords: alkali-carbonate reaction, ASR gel, dedolomitization, EDS analysis, minimum cement alkali

## 1 INTRODUCTION

The Kingston experimental concrete sidewalk, now demolished, was placed by the Ontario Ministry of Transportation in 1985 to investigate alkali-carbonate reaction (ACR) of the Pittsburg aggregate in Kingston, Ontario, Canada [1]. In 2007, core samples were taken for a petrographic study and the first result was published in 2008 [2,3]. Because previous concrete samples of ACR studied by the first author were old, more or less affected by weathering and leaching [4-6], it was necessary to investigate freshly taken core samples to exclude such secondary factors. As a result, detailed petrographic examination was jointly made of fresh samples to draw a definitive conclusion about the so-called ACR, including similar deterioration which is occurring in Kentucky, USA.

## 2 MATERIALS AND METHODS

Core samples were extracted from three cracked sections of the Kingston sidewalk (Table 1), i.e. low-alkali (L), high-alkali (H), and high-alkali boosted (Na), the last one examined by Grattan-Bellew et al. [2,3] and also taken for a blind control (Nb). The Kentucky concrete came from a 5-6 year-old building (A, B). Concrete prisms with the Pittsburg aggregate (38°C, 100% humidity, 450 days), with ordinary Portland cement and high-alumina cement, respectively, were examined, along with concrete microbars (80°C, 1M NaOH, 28 days) with the most reactive layer of the Pittsburg quarry, with and without a Japanese blastfurnace slag (50%). Polarizing microscopy, SEM and quantitative EDS analysis (JEOL JSM 5310LV/JED 2140: 15KV, 0.12nA) were done on the same polished thin section (30mm by 20mm, 15µm thickness) to identify reaction products and analyze compositions of Portland cement phases (Table 2) [3]. Details of analytical conditions are given in [5]

<sup>\*</sup> Correspondence to: katayamat@kge.co.jp

### 3 RESULTS

### 3.1 Cement phases and estimation of minimum alkali content

Unhydrated cement particles in concretes were analyzed by EDS for chemical compositions of major Portland cement phases (alite, belite, aluminate and ferrite). Good stoichiometry of atomic numbers was noted (Table 2). High-alkali concrete specimens from Kingston (N) contained elongated alkali aluminate, while low-alkali concrete (L) contained both alkali-aluminate and low-alkali cubic aluminate. The estimated minimum alkali content of the clinker (Table 1), based on compositions by EDS (Table 2), omits water-soluble alkali from alkali-sulfates that are no longer present in concretes. Conversion factors to estimate the alkali content of the cement were obtained by comparing the record and analytical data: e.g. x1.16 (1.04/0.90)-1.37 (1.04/0.76) for high-alkali cements (H, Na, Nb); x1.06 (0.56/0.53) for low-alkali cement (L). Cement clinker in the Kentucky concretes (A, B) was low-alkali, hence the cement used would be correspondingly low-alkali, with Na<sub>2</sub>Oeq of around 0.5%.

### 3.2 Compositional trend lines of reaction products

On the [Ca/Si]-[Ca]/[Na+K] diagrams (Figure 1) are shown the compositional trend lines of ASR gel analyzed by EDS in ACR-affected concretes. Alkali-boosted concrete of the Kingston sidewalk made from the same high-alkali cement, both open and blind samples (Figure 1, Na, Nb), presented typical ASR gel with a deflected line indicative of the *type III evolution* after Katayama [7], with narrower distribution. By contrast, low-alkali concrete (Figure 1, L) showed the *type I evolution* with a single line of wider distribution.

Kentucky concrete gave parallel trend lines of ASR gel of the *type II evolution* (Figure 1, A). The main longer line connects with the CSH gel (hydrates of alite and belite) at a "convergent point" around [Ca/Si]=1.5, [Ca]/[Na+K]=100. The slope of the alite hydration grades from negative with high-alkali cement (Figure 1, Na, Nb) through vertical (Figure 1, L) to positive with low-alkali cement (Figure 1, A).

## 3.3 Reaction products in field concretes

## Kingston sidewalk

In the alkali-boosted section (Table 3, Na, Nb), a whole spectrum of petrographic features of deterioration can be seen, ranging from 1) rim formation (Figure 2a) through 2) internal cracking of aggregate (Figure 2b) to 3) crack extension into cement paste (Figure 2c), and further 4) gel deposition within air voids along cracks (Figures 2d,e). ASR gel lining cracks in the dolomitic aggregate was identified by SEM observation on the polished thin section (Figures 2f,g,h). Platy crystals of Friedel's salt, which reflects splash of deicing salt in winter, were found within air voids surrounded by a calcite lining. Similar tendency was also noticeable in the high-alkali section (Table 3, H) and in the low-alkali section (Figures 4a,b), but gel-filled voids were lacking in the latter.

#### Kentucky concretes

Dolomitic limestone coarse aggregate presented 1) dedolomitization rim (Figure 3a), 2) internal crack of aggregate, and 3) crack extending into the cement paste (Figure 3c). Under the SEM, cracks from pools of ASR gel in the dolomitic aggregate (Figure 3d) widened toward the cement paste, being filled with ASR gel (Figure 3e), which are carbonated and wearing out in the grinding processes of thin section preparation. Along the cracks formed by ASR, brucite presented pseudomorphs surrounding dolomite rhombohedra (Figure 3f). Chert particles in the sand also formed reaction rims and internal cracks filed with ASR gel (Figures 3g,h). Kentucky concretes contained abundant fly ash particles of high-Ca glass with CaO >35 %, corresponding to class C fly ash (Figure 3b, Table 3).

## 3.4 Reaction products in laboratory concretes

### Concrete prism

Ordinary Portland cement produced a large expansion (about 0.5%, 450 days) with abundant ASR gel and its carbonation (Figure 4c). Under the SEM, composite veins of ASR gel and porous calcite replacing the gel

(Figure 4d, Table 3), indistinguishable in optical microscopy, can be identified. By contrast, concrete prism with high alumina cement produced relatively small but deleterious expansion (0.08%, 450 days). Conspicuous dedolomitization rims (Figure 4e) appeared on the dolomitic aggregate particles, whereas radial expansion cracks were confined to the interior of the crushed dolomitic limestone and sand particles of mudstone and silty limestone. Dedolomitized rhombohedra (Figure 4f) had a rim with compositions resembling hydrotalcite (Table 3), rather than brucite. Cracks of the dolomitic aggregate contained ASR gel (Table 3) that was almost replaced by calcite vein (Figure 4g,h).

### Concrete microbar

Cracking and ASR gel were evident (Figure 5a). Microcrystalline quartz in dolomitic limestone converted to ASR gel (Figure 5b) filling cracks open to the microbar surface. Crack-lining ASR gel is thinning out toward the interior of the aggregate (Figure 5c), and along the same crack, dolomite crystals underwent decomposition to rims (Figure 5d). Blastfurnace slag had some suppressing effect on the expansion of microbar until 14 days, but failed to prevent the formation of cracks filled with ASR gel at later ages (Figure 5e)(0.23%, 28days). ASR gel filled cracks in the cement paste (Figure 5f), running from the reacted dolomitic aggregate with dedolomitized rims (Figures 5g,h). In general, the alkali content of ASR gel was lower in the microbar made with slag than that without slag (Table 3).

### 4 DISCUSSION

Carbonation of ASR gel proceeds in dedolomitizing aggregate and forms a fragile mixture with calcium carbonate. Carbonate ions have two origins, i.e. dedolomitization and meteoric water seeping along cracks during exposure to the atmosphere and freeze/thaw cycles. This explains why crack-filling ASR gel has been missed in conventional petrography: 1) optically amorphous ASR gel overlapped by highly birefringent calcite is hidden in transmitted light, and 2) veins of carbonated ASR gel tend to wear off during sample preparation [5]. Thus, what we can see is not always what it is, nor what it is not. SEM-EDS analysis on the polished thin section enables this.

ASR gel in alkali-rich concrete is prone to carbonation and leaching alkalis. The evolutionary stage of ASR (Figure 1) was interpreted based on references [5,7,8]: the *type III evolution* of high-alkali concrete in Kingston, with a narrow range of ASR gel, suggests a high reaction rate and late stage of ASR. The low-alkali concrete from this sidewalk, with the *type I evolution* and a narrow range, indicates a moderate reaction and middle stage of ASR. The younger Kentucky concrete of low-alkali cement, presenting the *type II evolution*, indicates that ASR is at relatively early stage and slowly ongoing, because the main line occupies alkali-rich area. The negative slope of alite hydration in high-alkali cement (Figure 1, Na, Nb) is due to alkali release of alite into the cement paste, while the positive slope in low alkali cement (Figure 1, A) to the scarcity of alkali in alite and richness of alkali in cement paste.

The reason why the blastfurnace slag failed to prevent the formation of ASR gel and cracking in the concrete microbar at later age is because the crypto- to microcrystalline quartz present in an isolate form in the dolomitic aggregate was more reactive than slag particles, although slag had some effect of suppressing formation of expansive alkali-rich gel in concrete by absorbing alkali ions in its hydrates (Table 3). Both fly ash and low-alkali cement in the Kentucky concretes were ineffective in counteracting ASR of dolomitic aggregate and chert sand, because high-Ca fly ash glass has less pozzolanic reactivity than cryptocrystalline quartz. Generally, low-Ca fly ash glass with CaO <5% is thought to be more reactive than high-Ca flyash glass, but this could not suppress ASR in field concrete in which aggregate was highly reactive bronzite andesite [8].

## 5 CONCLUSIONS

• ACR in the Kingston experimental sidewalk is a combined effect of harmless dedolomitization and deleteriously expansive ASR of cryptocrystalline quartz. Cracking proceeds like a typical ASR, i.e. rim-formation, internal cracking of aggregate, external cracking into cement paste and precipitation of ASR gel in air voids.

• Low alkali cement in the sidewalk concrete (Na<sub>2</sub>Oeq 1.74kg/m<sup>3</sup>) could not prevent the formation of radial expansion cracks filled with ASR gel, but dedolomitization was not related to the crack formation.

• Blastfurnace slag in concrete microbar (50% mix) modifies compositions of ASR gel to higher [Ca]/[Na+K], but it is not sufficient to suppress deleterious expansion of ASR in the long term.

• High-alumina cement in concrete prism is effective in mitigating expansion of ASR than ordinary Portland cement, but it is not sufficient to suppress it. Crack-filling ASR gel in the aggregate is prone to carbonation, but dedolomitization does not produce expansion crack, except for hydrotalcite rims on the dolomite rhombohedra.

• Concrete deterioration in Kentucky is also caused by ASR, not by dedolomitization. Combined use of low alkali cement and fly ash could not counteract ASR of dolomitic limestone coarse aggregate and chert in the sand, because fly ash glass was of high-Ca variety with low pozzolanic activity.

## 6 **REFERENCES**

- Williams, DA and Rogers, C. (1991): Field trip guide to alkali-carbonate reaction in Kingston. Ontario Ministry of Transportation, Report MI-145: pp.26.
- [2] Grattan-Bellew, PE, Mitchell, LD, Margeson, J and Deng, M. (2008): Is ACR another variant of ASR? Comparison of acid insoluble residues of alkali-silica and alkali-carbonate reactive limestones and its significance for the ASR/ACR debate. Proceedings, 13<sup>th</sup> International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim, Norway: 706-716.
- [3] Grattan-Bellew, PE, Mitchell, LD, Margeson, J and Deng, M.(2010): Is alkali-carbonate reaction just a variant of alkali-silica reaction ACR=ASR? Cement & Concrete Research (40): 556-562.
- [4] Katayama, T (2004): How to identify carbonate rock reactions in concrete. Materials Characterization (53): 85-104.
- [5] Katayama, T (2010a): The so-called alkali-carbonate reaction (ACR) Its mineralogical and geochemical details, with special references to ASR. Cement & Concrete Research (40): 643-675.
- [6] Katayama, T (2011): So-called alkali-carbonate reaction Petrographic details of field concretes in Ontario. Proceedings, 13<sup>th</sup> Euroseminar on Microscopy Applied to Building Materials (EMABM). Ljubljana, Slovenia: pp.15.
- [7] Katayama, T (2008): ASR gel in concrete subject to freeze-thaw cycles Comparison between laboratory and field concrete from Newfoundland, Canada. Proceedings, 13<sup>th</sup> International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim, Norway: 174-183.
- [8] Katayama, T (2010b): Diagnosis of alkali-aggregate reaction Polarizing microscopy and SEM-EDS analysis. Proceedings of 6<sup>th</sup> International Conference on Concrete under Severe Conditions (CONSEC'10). Merida, Mexico, 19-34.

| TABLE 1: Est                                                                                                                   | timation of the minimum alkali         | content of c        | ement clinke | r in concrete | es by EDS ar | nalysis. |      |      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|--------------|---------------|--------------|----------|------|------|--|--|--|
|                                                                                                                                | Alkalis in concrete                    |                     | K            | Kentucky      |              |          |      |      |  |  |  |
| Record [1]                                                                                                                     | Conserve aller ( las ( as 3)           | no.                 | Н            | L             | Na           | Nb       | А    | В    |  |  |  |
|                                                                                                                                | Concrete aikali ( kg/ m <sup>3</sup> ) | Na2Oeq              | 3.22         | 1.74          | 3.8          | 38 *     |      |      |  |  |  |
|                                                                                                                                |                                        | Na <sub>2</sub> O   | 0.62         | 0.34          | 0.0          | 52       |      |      |  |  |  |
|                                                                                                                                |                                        | $K_2O$              | 0.63         | 0.34          | 0.0          | 53       |      |      |  |  |  |
|                                                                                                                                | (70)                                   | Na <sub>2</sub> Oeq | 1.04         | 0.56          | 1.0          | )4 *     |      |      |  |  |  |
| Estimation by<br>EDS analysis                                                                                                  | Mainten aller and at at                | Na <sub>2</sub> O   | 0.55         | 0.38          | 0.66         | 0.64     | 0.36 | 0.26 |  |  |  |
|                                                                                                                                | Numimum aikali content of              | K <sub>2</sub> O    | 0.33         | 0.22          | 0.37         | 0.26     | 0.14 | 0.17 |  |  |  |
|                                                                                                                                | clinker (%)                            | Na2Oeq              | 0.76         | 0.53          | 0.90         | 0.82     | 0.46 | 0.37 |  |  |  |
| * alkali boosted to 1.25% of cement by the addition of NaOH, Na: uranyl coated [2,3], Nb: blind sample                         |                                        |                     |              |               |              |          |      |      |  |  |  |
| Assumed ratio of alite:belite: aluminate:ferrite (wt%) = 60:20:10:10 for nos. H, Na, Nb, A; 65:15:5:15 for nos. I, B (TABLE 2) |                                        |                     |              |               |              |          |      |      |  |  |  |

| TABLE 2: Compositions of major Portland cement phases in Kingston experimental concrete sidewalk with estimated |                                                                     |       |        |       |           |       |         |                         |                                                                 |                                                                    |        |       |       |        |         |       |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|--------|-------|-----------|-------|---------|-------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|--------|-------|-------|--------|---------|-------|--|--|
| minimum alkali content of clinker based on EDS analysis. (wt%)                                                  |                                                                     |       |        |       |           |       |         |                         |                                                                 |                                                                    |        |       |       |        |         |       |  |  |
|                                                                                                                 | Alkali-boosted high-alkali concrete (Na)                            |       |        |       |           |       |         | Low-alkali concrete (L) |                                                                 |                                                                    |        |       |       |        |         |       |  |  |
|                                                                                                                 | Alite                                                               |       | Belite |       | Aluminate |       | Ferrite |                         | A                                                               | lite                                                               | Belite |       | Alun  | ninate | Ferrite |       |  |  |
|                                                                                                                 | quen                                                                |       | quen   |       | quen      |       | quen    |                         |                                                                 | anne                                                               |        | anne  |       | anne   | anne    |       |  |  |
|                                                                                                                 | ched                                                                |       | ched   |       | ched      |       | ched    |                         | aled                                                            |                                                                    | aled   |       | aled  |        | aled    |       |  |  |
| thin section                                                                                                    | 4                                                                   | 4     | 4      | 4     | 4         | 4     | 4       | 4                       | 3                                                               | 2                                                                  | 3      | 2     | 3     | 2      | 3       | 2     |  |  |
| particle                                                                                                        | А                                                                   | В     | А      | В     | А         | В     | А       | В                       | В                                                               | А                                                                  | А      | А     | С     | В      | С       | В     |  |  |
| SiO <sub>2</sub>                                                                                                | 24.84                                                               | 25.01 | 31.74  | 32.83 | 6.73      | 7.75  | 4.51    | 4.58                    | 24.28                                                           | 24.96                                                              | 31.82  | 32.69 | 5.61  | 5.83   | 4.76    | 1.59  |  |  |
| TiO <sub>2</sub>                                                                                                | 0.04                                                                | 0.24  | 0.15   | 0.15  | 0.45      | 0.28  | 0.18    | 1.09                    | 0.00                                                            | 0.52                                                               | 0.43   | 0.15  | 0.00  | 0.07   | 0.83    | 1.33  |  |  |
| Al <sub>2</sub> O <sub>3</sub>                                                                                  | 0.59                                                                | 0.72  | 1.22   | 0.58  | 23.15     | 23.00 | 19.63   | 15.61                   | 0.77                                                            | 0.51                                                               | 1.36   | 0.58  | 22.62 | 26.92  | 19.55   | 15.24 |  |  |
| Fe <sub>2</sub> O <sub>3</sub>                                                                                  | 0.36                                                                | 0.47  | 2.06   | 0.37  | 10.54     | 7.15  | 25.03   | 24.95                   | 1.13                                                            | 0.14                                                               | 1.10   | 0.95  | 10.86 | 5.61   | 22.39   | 34.06 |  |  |
| MnO                                                                                                             | 0.27                                                                | 0.00  | 0.00   | 0.24  | 0.00      | 0.00  | 0.00    | 0.72                    | 0.35                                                            | 0.39                                                               | 0.30   | 0.00  | 0.00  | 0.44   | 0.01    | 0.00  |  |  |
| MgO                                                                                                             | 1.14                                                                | 1.11  | 0.48   | 0.00  | 1.23      | 0.65  | 3.55    | 2.75                    | 0.47                                                            | 0.95                                                               | 0.84   | 0.30  | 2.22  | 0.85   | 2.51    | 0.97  |  |  |
| CaO                                                                                                             | 68.79                                                               | 69.59 | 59.65  | 61.07 | 49.67     | 51.26 | 45.29   | 45.98                   | 70.16                                                           | 67.12                                                              | 60.16  | 63.04 | 51.61 | 57.56  | 46.78   | 44.65 |  |  |
| Na <sub>2</sub> O                                                                                               | 0.43                                                                | 0.14  | 0.62   | 0.35  | 3.22      | 3.91  | 0.58    | 0.12                    | 0.10                                                            | 0.36                                                               | 0.85   | 0.56  | 2.39  | 1.04   | 0.29    | 0.28  |  |  |
| K <sub>2</sub> O                                                                                                | 0.00                                                                | 0.05  | 0.87   | 0.37  | 1.70      | 2.27  | 0.48    | 0.16                    | 0.17                                                            | 0.06                                                               | 0.76   | 0.57  | 1.00  | 0.41   | 0.07    | 0.11  |  |  |
| SO3                                                                                                             | 0.06                                                                | 0.26  | 0.00   | 0.46  | 0.00      | 0.08  | 0.25    | 0.15                    | 0.12                                                            | 0.42                                                               | 0.47   | 0.17  | 0.11  | 0.25   | 0.00    | 0.30  |  |  |
| Total                                                                                                           | 96.51                                                               | 97.60 | 96.79  | 96.42 | 96.70     | 96.36 | 99.50   | 96.11                   | 97.55                                                           | 95.42                                                              | 98.09  | 99.02 | 96.41 | 98.99  | 97.22   | 98.54 |  |  |
| Na2Oeq                                                                                                          | 0.30                                                                |       | 0.89   |       | 4.87      |       | 0.56    |                         | 0.                                                              | 0.31                                                               |        | 1.14  |       | 2.18   |         | 0.34  |  |  |
|                                                                                                                 | 3.01                                                                | 2.99  | 2.00   | 1.98  | 3.00      | 3.13  | 2.00    | 2.05                    | 3.03                                                            | 2.96                                                               | 2.03   | 2.03  | 3.00  | 2.96   | 2.03    | 2.01  |  |  |
| Ca                                                                                                              | 2.89                                                                | 2.89  | 1.91   | 1.94  | 2.53      | 2.62  | 1.90    | 2.03                    | 2.94                                                            | 2.84                                                               | 1.89   | 1.97  | 2.65  | 2.83   | 2.01    | 1.98  |  |  |
| Mg                                                                                                              | 0.07                                                                | 0.06  | 0.02   | 0.00  | 0.05      | 0.00  | 0.04    |                         | 0.03                                                            | 0.06                                                               | 0.04   | 0.01  | 0.07  |        |         |       |  |  |
| Na                                                                                                              | 0.03                                                                | 0.01  | 0.04   | 0.02  | 0.30      | 0.36  | 0.04    | 0.01                    | 0.01                                                            | 0.03                                                               | 0.05   | 0.03  | 0.22  | 0.09   | 0.02    | 0.02  |  |  |
| К                                                                                                               | 0.00                                                                | 0.00  | 0.03   | 0.01  | 0.10      | 0.14  | 0.02    | 0.01                    | 0.01                                                            | 0.00                                                               | 0.03   | 0.02  | 0.06  | 0.02   | 0.00    | 0.01  |  |  |
| Mn                                                                                                              | 0.01                                                                | 0.00  | 0.00   | 0.01  | 0.00      | 0.00  |         |                         | 0.01                                                            | 0.01                                                               | 0.01   | 0.00  | 0.00  | 0.02   |         |       |  |  |
| Ti                                                                                                              | 0.00                                                                | 0.01  | 0.00   | 0.00  | 0.02      | 0.01  |         |                         | 0.00                                                            | 0.02                                                               | 0.01   | 0.00  | 0.00  | 0.00   |         |       |  |  |
| Fe                                                                                                              | 0.01                                                                | 0.01  |        |       |           |       |         |                         | 0.03                                                            | 0.00                                                               |        |       |       |        |         |       |  |  |
|                                                                                                                 | 1.00                                                                | 1.01  | 1.04   | 1.01  | 2.02      | 1.97  | 2.02    | 1.95                    | 0.99                                                            | 1.01                                                               | 1.01   | 0.99  | 2.03  | 1.99   | 1.97    | 1.98  |  |  |
| Si                                                                                                              | 0.97                                                                | 0.97  | 0.95   | 0.98  | 0.32      | 0.37  | 0.18    | 0.19                    | 0.95                                                            | 0.98                                                               | 0.93   | 0.95  | 0.27  | 0.27   | 0.19    | 0.07  |  |  |
| Al                                                                                                              | 0.03                                                                | 0.03  | 0.04   | 0.02  | 1.30      | 1.29  | 0.91    | 0.76                    | 0.04                                                            | 0.02                                                               | 0.05   | 0.02  | 1.28  | 1.45   | 0.92    | 0.74  |  |  |
| Fe                                                                                                              |                                                                     |       | 0.05   | 0.01  | 0.38      | 0.26  | 0.74    | 0.77                    |                                                                 |                                                                    | 0.02   | 0.02  | 0.39  | 0.19   | 0.68    | 1.06  |  |  |
| Mg                                                                                                              |                                                                     |       |        |       | 0.02      | 0.05  | 0.17    | 0.00                    |                                                                 |                                                                    |        |       | 0.09  | 0.06   | 0.15    | 0.06  |  |  |
| Mn                                                                                                              |                                                                     |       |        |       |           |       | 0.00    | 0.03                    |                                                                 |                                                                    |        |       |       |        | 0.00    | 0.00  |  |  |
| Ti                                                                                                              |                                                                     |       |        |       |           |       | 0.01    | 0.03                    |                                                                 |                                                                    |        |       |       |        | 0.03    | 0.04  |  |  |
| S                                                                                                               | 0.00                                                                | 0.01  | 0.00   | 0.01  | 0.00      | 0.00  | 0.01    | 0.00                    | 0.00                                                            | 0.01                                                               | 0.01   | 0.00  | 0.00  | 0.01   | 0.00    | 0.01  |  |  |
| Cation                                                                                                          | 4.02                                                                | 3.99  | 3.03   | 3.00  | 5.03      | 5.09  | 4.01    | 4.01                    | 4.02                                                            | 3.97                                                               | 3.04   | 3.03  | 5.03  | 4.95   | 4.00    | 3.99  |  |  |
| 0                                                                                                               | 5.00                                                                | 5.00  | 4.00   | 4.00  | 6.00      | 6.00  | 5.00    | 5.00                    | 5.00                                                            | 5.00                                                               | 4.00   | 4.00  | 6.00  | 6.00   | 5.00    | 5.00  |  |  |
| [Ca/Si]                                                                                                         | 2.97                                                                | 2.98  | 2.01   | 1.99  |           |       |         |                         | 3.00                                                            | 2.88                                                               | 2.03   | 2.06  |       |        |         |       |  |  |
| [Ca]/ [Na+K]                                                                                                    |                                                                     |       |        |       |           |       |         |                         |                                                                 |                                                                    |        |       |       |        |         |       |  |  |
| [Fe]/[Al+Fe]                                                                                                    |                                                                     |       |        |       | 0.23      | 0.17  | 0.45    | 0.50                    |                                                                 |                                                                    |        |       | 0.24  | 0.12   | 0.42    | 0.59  |  |  |
|                                                                                                                 | alite belite aluminate ferite                                       |       |        |       |           |       |         |                         |                                                                 | alite belite aluminate ferite                                      |        |       |       |        |         |       |  |  |
| Minimum                                                                                                         | $Na_2O = 0.29x0.6 + 0.49x0.2 + 3.57x0.1 + 0.35x0.1 = 0.66\%$        |       |        |       |           |       |         |                         |                                                                 | $Na_{2}O = 0.23x0.65 + 0.71x0.15 + 1.72x0.05 + 0.29x0.15 = 0.39\%$ |        |       |       |        |         |       |  |  |
| clinker alkali                                                                                                  | $K_2O = 0.03 x 0.6 + 0.62 x 0.2 + 1.99 x 0.1 + 0.32 x 0.1 = 0.37\%$ |       |        |       |           |       |         |                         | $K_2O{=}0.03x0.65{+}0.62x0.15{+}1.99x0.05{+}0.32x0.15{=}0.23\%$ |                                                                    |        |       |       |        |         |       |  |  |
|                                                                                                                 | Na2Oeq = 0.66+0.658x0.37 = 0.90%                                    |       |        |       |           |       |         |                         | $Na_2Oeq = 0.39 + 0.658 \times 0.23 = 0.53\%$                   |                                                                    |        |       |       |        |         |       |  |  |

| TAB                                                                                                               | LE 3: Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | omposit                                                              | tions of                                            | typical                                   | reactio    | n produ                         | icts and     | 1 glassy    | materia                                                                   | ls in A           | CR con                                        | cretes l                                                  | by EDS                               | analysi        | s (wt%)                               | ).                                         |              |  |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------|---------------------------------|--------------|-------------|---------------------------------------------------------------------------|-------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------|---------------------------------------|--------------------------------------------|--------------|--|
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kingston experimental sidewalk                                       |                                                     |                                           |            |                                 |              | Concre      | te prism                                                                  |                   | С                                             | . microb                                                  | ar                                   | Kentucky       |                                       |                                            |              |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                    | Ja                                                  | Nb                                        | Н          | L                               | 0            | PC          | H                                                                         | AC                | OPC                                           | B                                                         | FC                                   | 1.07           | 1                                     | 4                                          |              |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASR<br>gel                                                           | ASR<br>gel                                          | Mg-sıl.<br>gel                            | ASR<br>gel | ASR<br>gel                      | ASR<br>gel   | Calcite     | ASR<br>gel                                                                | Hydro<br>t.alcite | ASR<br>gel                                    | ASR<br>gel                                                | glass                                | ASR            | ASR<br>gel                            | Bruc<br>ite                                | glass        |  |
| thin se                                                                                                           | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                    | 1                                                   | 4                                         | 2          | 3                               | 1            | 1           | 1                                                                         | 1                 | 1                                             | 1                                                         | 1                                    | 2              | 4                                     | 4                                          | 4            |  |
| particl                                                                                                           | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dol ls                                                               | void                                                | dol                                       | void       | dol ls                          | paste        | paste       | dol ls                                                                    | dol               | paste                                         | paste                                                     | slag                                 | dol ls         | cht                                   | dol ls                                     | FA**         |  |
| SiO <sub>2</sub>                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.32                                                                | 32.88                                               | 36.89                                     | 33.60      | 33.37                           | 41.60        | 0.55        | 69.47                                                                     | 1.80              | 36.24                                         | 40.99                                                     | 35.11                                | 73.62          | 54.82                                 | 8.59                                       | 30.67        |  |
| ${ m TiO_2}$                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06                                                                 | 0.47                                                | 0.00                                      | 0.38       | 0.29                            | 0.00         | 0.23        | 0.08                                                                      | 0.38              | 0.14                                          | 0.50                                                      | 0.68                                 | 0.01           | 0.10                                  | 0.00                                       | 1.96         |  |
| Al <sub>2</sub> O <sub>3</sub>                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                 | 0.94                                                | 6.00                                      | 0.77       | 2.75                            | 0.00         | 0.00        | 5.72                                                                      | 12.41             | 0.19                                          | 2.50                                                      | 13.90                                | 3.15           | 0.56                                  | 1.31                                       | 8.54         |  |
| FeO *                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30                                                                 | 0.28                                                | 2.29                                      | 0.00       | 1.55                            | 0.16         | 0.00        | 1.09                                                                      | 1.58              | 0.59                                          | 0.00                                                      | 0.08                                 | 0.19           | 0.47                                  | 1.17                                       | 6.79         |  |
| MgO                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                 | 0.00                                                | 20.01                                     | 0.00       | 0.18                            | 0.00         | 0.00        | 0.10                                                                      | 16.85             | 0.00                                          | 0.00                                                      | 5.14                                 | 0.00           | 0.00                                  | 36.44                                      | 8.34         |  |
| CaO                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.39                                                                | 32.88                                               | 1.97                                      | 38.86      | 28.59                           | 25.51        | 49.55       | 0.83                                                                      | 3.79              | 31.22                                         | 29.51                                                     | 42.07                                | 5.52           | 15.54                                 | 2.69                                       | 40.16        |  |
| Na <sub>2</sub> O                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45                                                                 | 0.46                                                | 0.00                                      | 0.12       | 0.13                            | 0.97         | 0.25        | 0.06                                                                      | 0.00              | 2.11                                          | 0.76                                                      | 0.11                                 | 0.28           | 2.64                                  | 0.04                                       | 0.04         |  |
| $K_{2}O$                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.29                                                                 | 0.72                                                | 0.47                                      | 0.01       | 0.54                            | 3.31         | 0.00        | 1.57                                                                      | 0.00              | 2.23                                          | 0.20                                                      | 0.39                                 | 1.29           | 4.86                                  | 0.04                                       | 0.00         |  |
| SO3                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.39                                                                 | 0.45                                                | 0.07                                      | 0.21       | 0.11                            | 0.67         | 0.10        | 0.13                                                                      | 0.39              | 0.28                                          | 0.66                                                      | 1.59                                 | 0.06           | 0.64                                  | 0.29                                       | 0.00         |  |
| Total                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.20                                                                | 63.64                                               | 67.70                                     | 73.94      | 67.51                           | 72.22        | 50.67       | 79.06                                                                     | 37.20             | 73.00                                         | 75.11                                                     | 99.06                                | 84.12          | 79.62                                 | 50.58                                      | 96.49        |  |
| [Ca/Si                                                                                                            | i]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.84                                                                 | 1.28                                                |                                           | 1.24       | 0.92                            | 0.66         |             | 0.01                                                                      |                   | 0.92                                          | 0.77                                                      |                                      | 0.08           | 0.30                                  |                                            |              |  |
| [Ca]/[                                                                                                            | Na+K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.32                                                                | 19.29                                               |                                           | 184.4      | 32.02                           | 4.48         |             | 32.64                                                                     |                   | 4.84                                          | 18.24                                                     |                                      | 2.70           | 1.47                                  |                                            |              |  |
| * Tota                                                                                                            | l iron as I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FeO, *                                                               | *High-C                                             | Ca fly ash                                | ı          |                                 |              |             |                                                                           |                   |                                               |                                                           |                                      |                |                                       |                                            |              |  |
| 0.0<br>2.5<br>2.0<br>2.1<br>2.0<br>2.1<br>0.0<br>0.0<br>0.0                                                       | ×A<br>¬A<br>+A<br>Kin<br>alka<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SR gel<br>SR gel<br>SR gel<br>gston<br>li-boos                       | (void)<br>(paste)<br>(aggre<br>ted (N<br>Ca/(N      | )<br>gate)<br>+<br>+<br>a)<br>10<br>Ja+K) | 100 atom   | Conv<br>point<br>10<br>nic rati | ergent<br>00 | 10000       |                                                                           | × □ + + 0.1       | ASR g<br>ASR g<br>ASR g<br>ingsto:<br>kali-bo | el (voic<br>el (past<br>el (agg<br>n<br>osted (<br>Ca/    | I)<br>regate)<br>(Nb)<br>10<br>(Na+H | 100<br>5) atos | + + + + + + + + + + + + + + + + + + + | Conver,                                    | gent<br>1000 |  |
| 3.5<br>3.0<br>2.5<br>2.5<br>3.0<br>2.0<br>2.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3 | $ \begin{array}{c} \bullet C: \\ \bullet C: \\ \bullet C: \\ \bullet A: \\ \bullet$ | SH gel<br>SH gel<br>SR gel<br>SR gel<br>SR gel<br>gston<br>-alkali ( | (alite)<br>(belite)<br>(void)<br>(paste)<br>(aggreg | zate)                                     | .#<br>100  | •<br>Co:<br>po<br>10            | (c)          | nt<br>10000 | 3.5<br>3.0<br>2.5<br>2.5<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>0.0<br>0.0 |                   | CSH g<br>CSH g<br>ASR g<br>ASR g<br>ASR g     | el (alité<br>el (beli<br>el (che:<br>el (lime<br>el (dol. | e)<br>te)<br>tr()<br>estone)<br>ls)  |                | • • • • • • • • • • • • • • • • • • • | (d)<br>ionverg<br>oint<br>ntucky<br>alkali | ;ent<br>(A)  |  |
|                                                                                                                   | J.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                                                                    | Ca/(                                                | Na+K                                      | ) ato      | mic ra                          | tio          | 10000       |                                                                           | 0.1               | 1                                             | Car                                                       | 10<br>/ Ma±                          | K) at          | omic                                  | ratio                                      | 1000         |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | Ua/ (.                                              | L NA I IN                                 | , ato      | inic ra                         | uU           |             |                                                                           |                   |                                               | Ca/                                                       | '(INa+                               | ns) at         | omic i                                | catio                                      |              |  |

FIGURE 1: Compositional trends of ASR gel in ACR-affected concretes. (a) Alkali-boosted high-alkali section in Kingston studied in [2,3] (Na), (b) blind control (Nb), and (c) low-alkali section (L) in Kingston; (d) low-alkali concrete in Kentucky (A).



FIGURE 2: Kingston experimental sidewalk, Ontario: Alkali-boosted high-alkali concrete (high-alkali cement plus NaOH to Na<sub>2</sub>Oeq 3.88kg/m<sup>3</sup>, Na, Nb). (a)-(d): Sequence of crack formation: (a) Stage 1: rim formation (arrows); (b) Stage 2: internal cracking with ASR gel within aggregate; (c) Stage 3: cracking from aggregate into the cement paste, exuding ASR gel; (d),(c) Stage 4: ASR gel lining air void (arrows) along crack distant from aggregate; (f)-(h) ASR gel filling the crack that widens from the aggregate into cement paste (Stage 4).



FIGURE 3: Concrete from a building in Kentucky, USA (with low-alkali cement, A): (a) Rim-formation of dolomitic limestone; (b) Unhydrated high-Ca flyash particles; (c) Crack running from dolomitic limestone into the cement paste; (d) Terminal of cracks filled with pools of ASR gel, the arrows point to gel; (e) ASR gel in the crack wearing out during sample preparation; (f) Pseudomorphs of brucite (black arrows) surrounding dolomite rhombohedra, intermixed with ASR gel (white arrows) (g),(h) Crack-filling ASR gel within reacted sand particle of chert



FIGURE 4: (a),(b) Kingston experimental sidewalk: Low-alkali concrete (with low-alkali cement Na<sub>2</sub>Oeq 1.74kg/m<sup>3</sup>, L). (c),(d) Concrete prism with ordinary Portland cement (450 days) with radial expansion cracks filled with ASR gel (grey in SEM photograph (d)) later carbonated by calcite veins (bright in (d)). (e)-(h): Concrete prism with high-alumina cement (450 days); (e) Dedolomitization rims of aggregate (f) forming hydrotalcite rims on dolomite rhombohedra; (g) Dolomitic limestone with faint internal crack, (h) filled with bright calcite vein (white arrows) replacing a darker precursor ASR gel (black arrows).



FIGURE 5: Concrete microbar (RILEM AAR-5) with cracks filled with ASR gel (28days in NaOH solution), thin sectioned after 2 years dry storage after testing: (a)-(d): Ordinary Portland cement (low-alkali): (a) Gel-filled crack; b) Microcrystalline quartz (Q) converting to ASR gel; (c) Crack-lining ASR gel, (d) thinning out to the interior of the aggregate, with surface-decomposed dolomite rhombohedra along the crack. (e)-(h): Cement mixed with 50% blastfurnace slag. (c) Gel-filled crack; (f) Crack-lining ASR gel in cement paste; (g) ASR gel exuded to the mouth of the dolomitic limestone aggregate particle (D), (h) Dedolomitization along the terminating crack formed by ASR.